Warm-up: Brute Force Solutions for Hard Problems

One reliable fall-back strategy for solving hard problems is brute force:
(1) enumerate all possible solutions and choose the best (optimization problems)
(2) enumerate all possible certificates and accept if any are correct (decision problems).

How long does it take to solve these problems by brute force?

Maximum 7 _

Independent Set Traveling Salesperson
Input: graph G with n Probleml (TSP)

nodes S Input: weighted graph G

with n nodes

» Output: Hamiltonian cycle
(cycle touching every
vertex exactly once) of
minimum weight

Output: largest
possible set of nodes
such that no two nodes
are connected by an
edge

Exact and Parameterized Algorithms for Hard Problems

1. Smarter,
smaller
“brute force”
running time

\ 2. Efficient algorithm
if a key parameter

is reasonably sized

02U X poly@?))

Brute
force
running
time

How do we deal with (NP-)hard problems?

e Give up &

Adopt a heuristic: use an algorithm that appears to work well empirically

e Find a pretty good solution: design a fast algorithm guaranteed to get an
“approximately” correct answer (Approximation Algorithms)

e Restrict the problem: solve in a tractable subclass / setting

e Formulate as an Integer Program; relax to a Linear Program
o In some cases, this amounts to adopting a heuristic
o In other cases, this is provably correct up to some factor
o Other general-purpose ways to express a constraint satisfaction problem

Today:

e Exact Exponential Time Algorithms: Solve the hard problem slowly, but better

e Parameterized Algorithms: Measure runtime with respect to some other key
parameter. Typical conclusion: “if this structural parameter is really small, then my
algorithm is efficient”.

|. The Traveling Salesperson Problem

Input: A weighted graph G
with n nodes

Output: Least-weight
(shortest) cycle that visits
every node exactly once (a
“Hamiltonian” cycle)

|. The Traveling Salesperson Problem

B3 0*(nl)~= 0*(n"/ e")

Way, way bigger than 2°M...

Input: A weighted graph G
with n nodes

Output: Least-weight
(shortest) cycle that visits
every node exactly once

|. The Traveling Salesperson Problem N

Idea: pick an arbitrary start node a.

Using dynamic programming:

For every destination t and every subset S € V,
compute the shortest path using exactly the nodes in S.

Input: A weighted graph G
with n nodes

Output: Least-weight
(shortest) cycle that visits
every node exactly once

|. The Traveling Salesperson Problem

Idea: pick an arbitrary start node a.
For every destination t and every subset S € V, Input: A weighted graph G
compute the shortest path using exactly the nodes in S. with n nodes

. Output: Least-weight
BHK (a. P S C V) (shortest) cycle that visits

every node exactly once

|. The Traveling Salesperson Problem

Idea: pick an arbitrary start node a.
For every destination t and every subset S € V, Input: A weighted graph G
compute the shortest path using exactly the nodes in S. with n nodes

. Output: Least-weight
BHK (a. P S C V) (shortest) cycle that visits

every node exactly once

= min {BHK(a, v, S\{v})

vES

+ dist (v, j)}

Base cases? S ={}; return dist(a, j)
Table-filling? Increasing |S|

DP table size? O(n 2")

Total runtime? O(n?2")

|. The Traveling Salesperson Problem

Idea: pick an arbitrary start node a.
For every destination t and every subset S € V, Input: A weighted graph G
compute the shortest path using exactly the nodes in S. with n nodes

. Output: Least-weight
BHK (a P S C V) (shortest) cycle that visits

every node exactly once

= min {BHK(a, v, S\{v})

vES
Base cases? S ={}; return dist(a, j) + dist (V, J) }
Table-filling? Increasing |S|

DP table size? O(n 2")
Total runtime? O(n%2")

|. The Traveling Salesperson Problem

BRUTE-FORCE
SOL.UTTON:

O(n!)

DYNAMIC
PROGRAMMING
ALGORITHMS:

O (n*2")

SELUNG ON EBAY:

0(1)

STILL WORKING
ON YOUR ROUTE?

3

=~

SHUT THE
HEW VR

Open question: Can we get 20999997

Il. Maximum Independent Set

Input: A graph G withn
nodes

Output: Largest set of
nodes such that no two
nodes are connected by an
edge

Branch and Bound for Independent Set @

o 5
AV

Brute force: O*(2")
“Guess and check” all
vertex subsets

Branch and Bound for Independent Set

Brute force: O*(2")
“Guess and check” all
vertex subsets

e Selectanodev
o0 Include v, exclude v’s
neighbors, recurse
o Exclude v, recurse

Branch and Bound for Independent Set

@@

Brute force: O*(2")
“Guess and check” all
vertex subsets

Runtime recurrence:
T(n) <2 T(n-1) + O(1)

e Selectanodev
o0 Include v, exclude v’s
neighbors, recurse
o Exclude v, recurse

Not tight. Can we do better?

Board work: Maximum Independent Set (FK 1.2)

Branch and Bound for Independent Set

Brute force: O*(2")
“Guess and check” all
vertex subsets

@@

Many further improvements!

0*(1.286") [Tarjan ‘72]
0%(1.260") [TT ‘77]
0*(1.232") [Jian ‘86]
0*(1.211") [Robson ‘86]

0*(1.1996") [XN ‘17]

11l. Minimum Vertex Cover

Input: A graph G withn
nodes

Output: Smallest set of
nodes such that every edge
is “covered” by an adjacent
node in our set

I1l. Minimum Vertex Cover 04553 J 1

Brute force: O*(2")
“Guess and check” all vertex subsets

Branching algorithms? Yes

ILPs? Yes

Let’s try something new. What if we
want a vertex cover of size at most k?

Input: graph G with n
nodes

Output: Smallest set of
nodes such that every
edge is “covered” by an
adjacent node in our set

Board work: Vertex Cover (KT 10.1)

Brute force: O(n¥) possible covers * O(kn) to check if the cover is correct.
What does O(kn**") mean with respect to “polynomial time”?

Observation: each vertex can “cover” at most n edges. We can reject unless our
graph has at most kn edges.

Consider an edge (u, v). Either:

- uis in our cover; thus we can cover G - {u} with k-1 vertices
- visin our cover; thus we can cover G - {v} with k-1 vertices.

O(2% kn) time!

I1l. Minimum Vertex Cover 04553 J 1

Input: graph G with n

: nodes
.n-?ﬁ\j Brute force: 0*(2") Output: Smallest set of
Ll “Guess and check” all vertex subsets nodes such that every

edge is “covered” by an
adjacent node in our set

Branching algorithms? Yes

ILPs? Yes

More improvements!
Let’s try something new. What if we e O(kn + 2'k**?) [BG ‘93]

k ‘
want a vertex cover of size at most k? e Ofkn+1.274%) [CKX "10]

Aside: Parameterized Tractability

“Fixed-Parameter Tractable”: f(k) x poly(n)
Read: “efficiently solvable, as long as k is very small!”

“WI[1]-hard”: Analogous to NP-hard
Read: “unlikely to be Fixed-Parameter Tractable
(with respect to a certain parameter)”

Maximum Independent Set is W[1]-hard in size of the
independent set! So we’ll stick to branch and bound...

IV. Bonus: An Exact Algorithm for 3SAT S v

Randomized!

Input: Boolean formula with n variables in
3-Conjunctive Normal Form (an AND of 3-OR clauses)

Output: A variable assignment satisfying all clauses,
or “no” if no satisfying assignment exists

(T3 Vx5 V 217)
Clause k

(5131 V o \/$42) /\ (332 V X3 Vfl7) JANEIIEIVAN
& S
Clause 1 s Clause 2 g

V. Bonus: An Exact Algorithm for 3SAT ':%,5

Randomized!

1. Choose a random assignment of variables.
2. If all clauses aren’t satisfied, then...
« Choose an unsatisfied clause
 Flip one variable in that clause (choose at random)

F F F F F T
(x 1 V V X 3) ‘ (_X,' 1 V V X 3)

P
‘@8

V. Bonus: An Exact Algorithm for 3SAT Sy
How likely is this procedure to give us a solution? Randomized!
X1 — F xXq = T
x, =T & x, =T
x3 = F (V] x3 = F
x, =T & x4 =T
X5 = F O Xg =— F
Xeg — T Xeg — F
Let £ be the number of variables where our guesses agree with
F F F
(x1 V x5 V x3)
T F F

If our assignment fails to satisfy a clause, we disagree with S in that clause.
Therefore, at every step, f increases to t+1 with probability at least 1/3!

y - g
PO

V. Bonus: An Exact Algorithm for 3SAT S v

Randomized!

e Suppose our initial guess gets t = 0.5n variables

matching S. (We'll assume this for simplicity. If we try
several times this is likely to be true at least once.)

« At each step, tincreases to f+7 with probability at
least 1/3.

 If t = n, we have found our satisfying solution!

Chance of making 0.5n “correct” moves in a row?

| .
(g)().-.)n Z 1.733—71

A Randomized Exact Algorithm for 3-SAT: Analysis

| AP
(g)O.on Z 1.733~ ™"

Final Algorithm:
* Try our procedure
(1.733+0.001)" times

* Hope we get lucky! So you're saying
there’s a
This seems silly, but... chance...

e Succeeds w.h.p!
e Faster than brute force!
e Better analysis: O(1.334")!

