Warm-up: Brute Force Solutions for Hard Problems

One reliable fall-back strategy for solving hard problems is *brute force*:

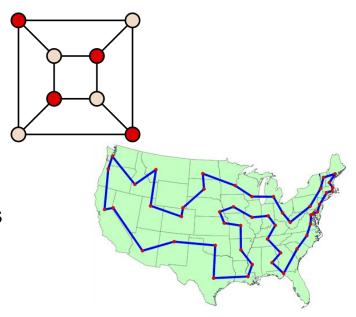
- (1) enumerate all possible solutions and choose the best (optimization problems)
- (2) enumerate all possible certificates and accept if any are correct (decision problems).

How long does it take to solve these problems by brute force?

Input: graph G with n

nodes

Output: largest possible set of nodes such that no two nodes are connected by an edge



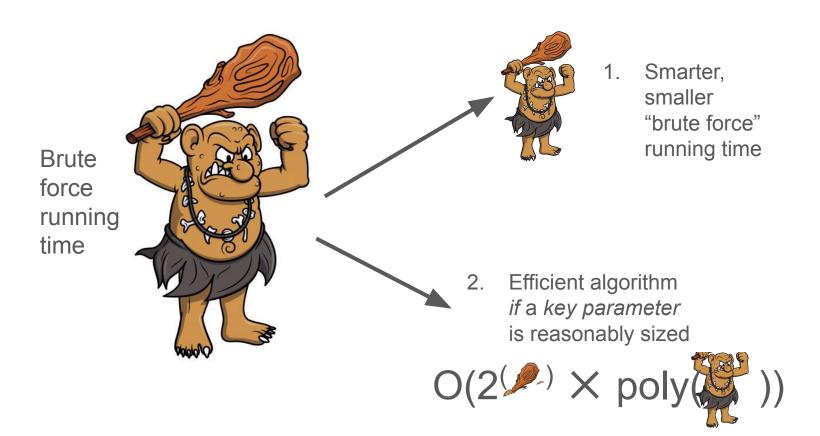
Traveling Salesperson Problem (TSP)

Input: weighted graph G

with n nodes

Output: Hamiltonian cycle (cycle touching every vertex exactly once) of minimum weight

Exact and Parameterized Algorithms for Hard Problems

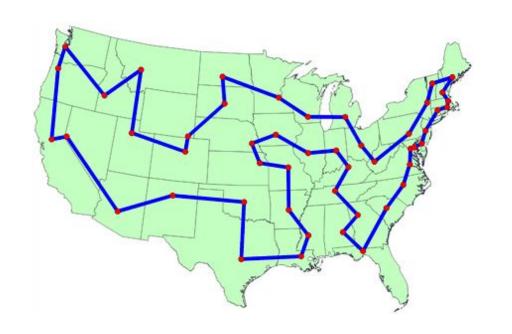


How do we deal with (NP-)hard problems?

- Give up
- Adopt a heuristic: use an algorithm that appears to work well empirically
- Find a pretty good solution: design a fast algorithm guaranteed to get an "approximately" correct answer (Approximation Algorithms)
- Restrict the problem: solve in a tractable subclass / setting
- Formulate as an Integer Program; relax to a Linear Program
 - o In some cases, this amounts to adopting a heuristic
 - o In other cases, this is provably **correct up to some factor**
 - Other general-purpose ways to express a constraint satisfaction problem

Today:

- Exact Exponential Time Algorithms: Solve the hard problem slowly, but better
- Parameterized Algorithms: Measure runtime with respect to some other key parameter. Typical conclusion: "if this structural parameter is *really small*, then my algorithm is efficient".



Input: A weighted graph *G* with *n* nodes

Output: Least-weight (shortest) cycle that visits every node exactly once (a "Hamiltonian" cycle)

 $O^*(n!) \simeq O^*(n^n / e^n)$ Way, way bigger than $2^{O(n)}...$

Input: A weighted graph *G* with *n* nodes

Output: Least-weight (shortest) cycle that visits every node exactly once

Idea: pick an arbitrary start node a.

Using dynamic programming:

For every destination t and every subset $S \subseteq V$,

compute the shortest path using exactly the nodes in S.

Input: A weighted graph *G* with *n* nodes

Output: Least-weight (shortest) cycle that visits every node exactly once

Idea: pick an arbitrary start node a.

For every destination t and every subset $S \subseteq V$, compute the shortest path using exactly the nodes in S.

$$BHK(a, j, S \subseteq V)$$

Input: A weighted graph *G* with *n* nodes

Output: Least-weight (shortest) cycle that visits every node exactly once

Idea: pick an arbitrary start node a.

For every destination t and every subset $S \subseteq V$, compute the shortest path using exactly the nodes in S.

Input: A weighted graph *G* with *n* nodes

$$BHK(a, j, S \subseteq V)$$

$$= \min_{\mathbf{v} \in S} \left\{ \mathbf{BHK} \left(\mathbf{a}, \mathbf{v}, \mathbf{S} \setminus \{ \mathbf{v} \} \right) \right\}$$

Output: Least-weight (shortest) cycle that visits every node exactly once

Base cases? Increasing |S| Table-filling?

DP table size? $O(n 2^n)$ **Total runtime?** O(n² 2ⁿ)

+ dist(v, j) } S = {}; return dist(a, j)

Idea: pick an arbitrary start node a.

For every destination t and every subset $S \subseteq V$, compute the shortest path using exactly the nodes in S.

Input: A weighted graph *G* with *n* nodes

$$BHK(a, j, S \subseteq V)$$

Output: Least-weight (shortest) cycle that visits every node exactly once

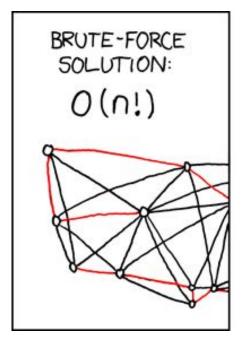
$$= \min_{\mathbf{v} \in \mathbf{S}} \left\{ \mathbf{BHK} \left(\mathbf{a}, \mathbf{v}, \mathbf{S} \setminus \{\mathbf{v}\} \right) \right\}$$

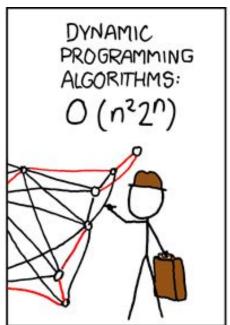
Base cases? S = {}; return dist(a, j)
Table-filling? Increasing |S|

DP table size? O(n 2ⁿ) **Total runtime?** O(n² 2ⁿ)

How should we feel about this?

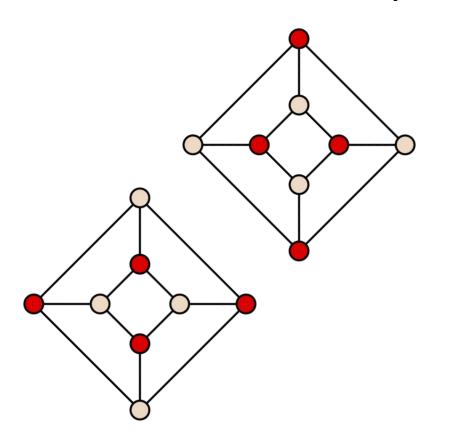
+ dist(**v**, **j**) }





Open question: Can we get 2^{0.99999n}?

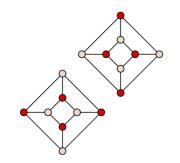
II. Maximum Independent Set



Input: A graph *G* with *n* nodes

Output: Largest set of nodes such that no two nodes are connected by an edge

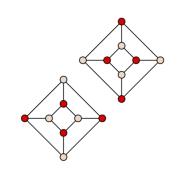
Brute force: O*(2ⁿ)
"Guess and check" all vertex subsets

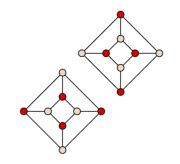


Brute force: O*(2ⁿ)
"Guess and check" all vertex subsets

Equivalent Branching Algorithm:

- Select a node v
 - Include v, exclude v's neighbors, recurse
 - Exclude v, recurse





Brute force: O*(2ⁿ) "Guess and check" all

Equivalent Branching Algorithm:

vertex subsets

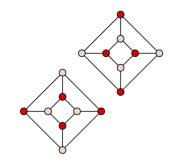
- Select a node v
 - Include v, exclude v's neighbors, recurse
 - Exclude v, recurse

Runtime recurrence:

T(n) < 2 T(n-1) + O(1)

Not tight. Can we do better?

Board work: Maximum Independent Set (FK 1.2)



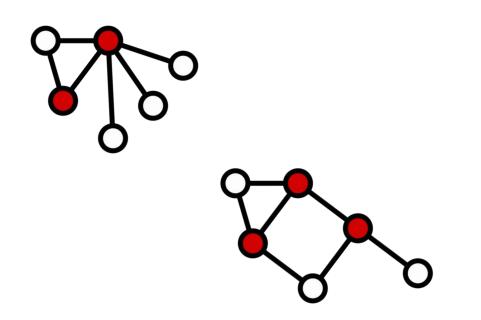
Brute force: O*(2ⁿ)

"Guess and check" all vertex subsets

Many further improvements!

- O*(1.286ⁿ) [Tarjan '72]
- O*(1.260ⁿ) [TT '77]
- O*(1.232ⁿ) [Jian '86]
- O*(1.211ⁿ) [Robson '86]
- ..
- O*(1.1996ⁿ) [XN '17]

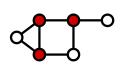
III. Minimum Vertex Cover



Input: A graph *G* with *n* nodes

Output: Smallest set of nodes such that every edge is "covered" by an adjacent node in our set

III. Minimum Vertex Cover



Brute force: $O^*(2^n)$

"Guess and check" all vertex subsets

Branching algorithms? Yes

ILPs? Yes

Let's try something new. What if we want a vertex cover of size at most *k*?

Input: graph *G* with *n*

nodes

Output: Smallest set of nodes such that every edge is "covered" by an adjacent node in our set

Board work: Vertex Cover (KT 10.1)

Brute force: O(n^k) possible covers * O(kn) to check if the cover is correct.

What does O(kn^{k+1}) mean with respect to "polynomial time"?

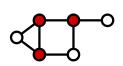
Observation: each vertex can "cover" at most *n* edges. We can reject unless our graph has at most kn edges.

Consider an edge (u, v). Either:

- u is in our cover; thus we can cover G {u} with k-1 vertices
- v is in our cover; thus we can cover G {v} with k-1 vertices.

O(2^k kn) time!

III. Minimum Vertex Cover



Brute force: $O^*(2^n)$

"Guess and check" all vertex subsets

Input: graph *G* with *n* nodes

Output: Smallest set of nodes such that every edge is "covered" by an adjacent node in our set

Branching algorithms? Yes

ILPs? Yes

Let's try something new. What if we want a vertex cover of size at most *k*?

More improvements!

- $O(kn + 2^k k^{2k+2})$ [BG '93]
- O(kn + 1.274^k) [CKX '10]

Aside: Parameterized Tractability

"Fixed-Parameter Tractable": $f(k) \times poly(n)$

Read: "efficiently solvable, as long as k is very small!"

"W[1]-hard": Analogous to NP-hard

Read: "unlikely to be Fixed-Parameter Tractable (with respect to a certain parameter)"

Maximum Independent Set is W[1]-hard in size of the independent set! So we'll stick to branch and bound...

Input: Boolean formula with *n* variables in 3-Conjunctive Normal Form (an AND of 3-OR clauses)

Output: A variable assignment satisfying all clauses, or "no" if no satisfying assignment exists

$$(x_1 \overset{\bullet^*}{\vee} \overline{x}_2 \overset{\bullet^*}{\vee} x_{42}) \overset{\wedge}{\wedge} (x_2 \vee x_3 \vee \overline{x}_{17}) \wedge \cdots \overset{\wedge}{\wedge} (\overline{x}_3 \vee x_5 \vee x_{17})$$
Clause 1 Clause 2 Clause k

- 1. Choose a random assignment of variables.
- 2. If all clauses aren't satisfied, then...
 - Choose an unsatisfied clause
 - Flip one variable in that clause (choose at random)

$$(x_1 \lor \bar{x}_2 \lor x_3) \longrightarrow (x_1 \lor \bar{x}_2 \lor x_3)$$

How likely is this procedure to give us a solution?

Our random
$$x_1 = F$$
 $x_2 = T$ $x_2 = T$ $x_3 = F$ Fixed solution $x_3 = F$ $x_4 = T$ $x_5 = F$ $x_6 = F$ $x_6 = F$

Let t be the number of variables where our guesses agree with s.

$$(x_1 \ V \ \overline{x}_2 \ V \ x_3)$$
F Our random guesses
F S (satisfies all clauses)

If our assignment fails to satisfy a clause, we disagree with *S* in that clause. Therefore, at every step, *t* increases to *t*+1 with probability at least 1/3!

- Suppose our initial guess gets t ≥ 0.5n variables matching S. (We'll assume this for simplicity. If we try several times this is likely to be true at least once.)
- At each step, t increases to t+1 with probability at least 1/3.
- If t = n, we have found our satisfying solution!

Chance of making **0.5n** "correct" moves in a row?

$$\left(\frac{1}{3}\right)^{0.5n} \ge 1.733^{-n}$$

A Randomized Exact Algorithm for 3-SAT: Analysis

$$\left(\frac{1}{3}\right)^{0.5n} \ge 1.733^{-n}$$

Final Algorithm:

- Try our procedure (1.733+0.001)ⁿ times
- Hope we get lucky!

This seems silly, but...

- Succeeds w.h.p!
- Faster than brute force!
- Better analysis: O(1.334ⁿ)!

So you're saying there's a chance...

