
Warm-up: Brute Force Solutions for Hard Problems
One reliable fall-back strategy for solving hard problems is brute force:
(1) enumerate all possible solutions and choose the best (optimization problems) 
(2) enumerate all possible certificates and accept if any are correct (decision problems).

How long does it take to solve these problems by brute force?

Traveling Salesperson 
Problem (TSP)
Input: weighted graph G 
with n nodes
Output: Hamiltonian cycle 
(cycle touching every 
vertex exactly once) of 
minimum weight

Maximum 
Independent Set
Input: graph G with n 
nodes
Output: largest 
possible set of nodes 
such that no two nodes 
are connected by an 
edge



Exact and Parameterized Algorithms for Hard Problems

Brute 
force
running 
time

1. Smarter, 
smaller 
“brute force” 
running time

2. Efficient algorithm 
if a key parameter 
is reasonably sized

O(2(     ) ✕ poly(     ))



How do we deal with (NP-)hard problems?

● Give up 🤷
● Adopt a heuristic: use an algorithm that appears to work well empirically
● Find a pretty good solution: design a fast algorithm guaranteed to get an 

“approximately” correct answer (Approximation Algorithms)
● Restrict the problem: solve in a tractable subclass / setting
● Formulate as an Integer Program; relax to a Linear Program

○ In some cases, this amounts to adopting a heuristic
○ In other cases, this is provably correct up to some factor
○ Other general-purpose ways to express a constraint satisfaction problem

Today:

● Exact Exponential Time Algorithms: Solve the hard problem slowly, but better
● Parameterized Algorithms: Measure runtime with respect to some other key 

parameter. Typical conclusion: “if this structural parameter is really small, then my 
algorithm is efficient”. 



I. The Traveling Salesperson Problem

Input: A weighted graph G 
with n nodes

Output: Least-weight 
(shortest) cycle that visits 
every node exactly once (a 
“Hamiltonian” cycle)



I. The Traveling Salesperson Problem

Input: A weighted graph G 
with n nodes

Output: Least-weight 
(shortest) cycle that visits 
every node exactly once

O*(n!) ~= O*(nn / en)
Way, way bigger than 2O(n)...



I. The Traveling Salesperson Problem

Input: A weighted graph G 
with n nodes

Output: Least-weight 
(shortest) cycle that visits 
every node exactly onceIdea: pick an arbitrary start node a.

Using dynamic programming:
For every destination t and every subset S ⊆ V, 

compute the shortest path using exactly the nodes in S. 
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I. The Traveling Salesperson Problem

Input: A weighted graph G 
with n nodes

Output: Least-weight 
(shortest) cycle that visits 
every node exactly once

Idea: pick an arbitrary start node a.
For every destination t and every subset S ⊆ V, 

compute the shortest path using exactly the nodes in S.

BHK(a, j, S ⊆ V)

= min
v∊S 
{BHK(a, v, S\{v})       

+ dist(v, j)}Base cases? 
Table-filling?
DP table size?
Total runtime?

S = {}; return dist(a, j)
Increasing |S|
O(n 2n)
O(n2 2n)



I. The Traveling Salesperson Problem

Input: A weighted graph G 
with n nodes

Output: Least-weight 
(shortest) cycle that visits 
every node exactly once

Idea: pick an arbitrary start node a.
For every destination t and every subset S ⊆ V, 

compute the shortest path using exactly the nodes in S.

BHK(a, j, S ⊆ V)

= min
v∊S 
{BHK(a, v, S\{v})       

+ dist(v, j)}Base cases? 
Table-filling?
DP table size?
Total runtime?

S = {}; return dist(a, j)
Increasing |S|
O(n 2n)
O(n2 2n) How should we feel about this?



I. The Traveling Salesperson Problem

Open question: Can we get 20.99999n?



II. Maximum Independent Set

Input: A graph G with n 
nodes

Output: Largest set of 
nodes such that no two 
nodes are connected by an 
edge



Branch and Bound for Independent Set

Brute force: O*(2n)
“Guess and check” all 
vertex subsets



Branch and Bound for Independent Set

Brute force: O*(2n)
“Guess and check” all 
vertex subsets

Equivalent Branching Algorithm:
● Select a node v

○ Include v, exclude v’s 
neighbors, recurse

○ Exclude v, recurse



Branch and Bound for Independent Set

Brute force: O*(2n)
“Guess and check” all 
vertex subsets

Equivalent Branching Algorithm:
● Select a node v

○ Include v, exclude v’s 
neighbors, recurse

○ Exclude v, recurse

Runtime recurrence:
T(n) < 2 T(n-1) + O(1)

Not tight. Can we do better?



Board work: Maximum Independent Set (FK 1.2)



Branch and Bound for Independent Set

Brute force: O*(2n)
“Guess and check” all 
vertex subsets Many further improvements!

● O*(1.286n) [Tarjan ‘72]
● O*(1.260n) [TT ‘77]
● O*(1.232n) [Jian ‘86]
● O*(1.211n) [Robson ‘86]
● …
● O*(1.1996n) [XN ‘17]



III. Minimum Vertex Cover

Input: A graph G with n 
nodes

Output: Smallest set of 
nodes such that every edge 
is “covered” by an adjacent 
node in our set



III. Minimum Vertex Cover
Input: graph G with n 
nodes
Output: Smallest set of 
nodes such that every 
edge is “covered” by an 
adjacent node in our set

Brute force: O*(2n)
“Guess and check” all vertex subsets

Branching algorithms? Yes

ILPs? Yes

Let’s try something new. What if we 
want a vertex cover of size at most k?



Board work: Vertex Cover (KT 10.1)

Brute force: O(nk) possible covers * O(kn) to check if the cover is correct.

What does O(knk+1) mean with respect to “polynomial time”?

Observation: each vertex can “cover” at most n edges. We can reject unless our 
graph has at most kn edges.

Consider an edge (u, v). Either:

- u is in our cover; thus we can cover G - {u} with k-1 vertices
- v is in our cover; thus we can cover G - {v} with k-1 vertices.

O(2k kn) time!



III. Minimum Vertex Cover
Input: graph G with n 
nodes
Output: Smallest set of 
nodes such that every 
edge is “covered” by an 
adjacent node in our set

Brute force: O*(2n)
“Guess and check” all vertex subsets

Branching algorithms? Yes

ILPs? Yes

Let’s try something new. What if we 
want a vertex cover of size at most k?

More improvements!
● O(kn + 2kk2k+2) [BG ‘93]
● O(kn + 1.274k) [CKX ‘10]



Aside: Parameterized Tractability

“Fixed-Parameter Tractable”: f(k) ✕ poly(n)
Read: “efficiently solvable, as long as k is very small!”

“W[1]-hard”: Analogous to NP-hard
Read: “unlikely to be Fixed-Parameter Tractable 

(with respect to a certain parameter)” 

Maximum Independent Set is W[1]-hard in size of the 
independent set! So we’ll stick to branch and bound…



IV. Bonus: An Exact Algorithm for 3SAT

Input: Boolean formula with n variables in 
3-Conjunctive Normal Form (an AND of 3-OR clauses)

Output: A variable assignment satisfying all clauses, 
or “no” if no satisfying assignment exists

Randomized!

Clause 1 Clause 2 Clause kAND
AND

OR OR



IV. Bonus: An Exact Algorithm for 3SAT

1. Choose a random assignment of variables.
2. If all clauses aren’t satisfied, then…

• Choose an unsatisfied clause
• Flip one variable in that clause (choose at random)

 
F          F          F

 
F          F         T

Randomized!



 

Fixed solution
S (satisfies 
all clauses)

 

Our random 
guesses

Let t be the number of variables where our guesses agree with S. 

 
F          F          F

If our assignment fails to satisfy a clause, we disagree with S in that clause. 
Therefore, at every step, t increases to t+1 with probability at least 1/3!

T          F          F

Our random guesses

S (satisfies all clauses)

IV. Bonus: An Exact Algorithm for 3SAT
How likely is this procedure to give us a solution? Randomized!



• Suppose our initial guess gets t ≥ 0.5n variables 
matching S. (We’ll assume this for simplicity. If we try 
several times this is likely to be true at least once.)

• At each step, t increases to t+1 with probability at 
least 1/3.

• If t = n, we have found our satisfying solution!

Chance of making 0.5n “correct” moves in a row?

IV. Bonus: An Exact Algorithm for 3SAT
Randomized!



A Randomized Exact Algorithm for 3-SAT: Analysis

So you’re saying 
there’s a 
chance…

Final Algorithm:
• Try our procedure 

(1.733+0.001)n times
• Hope we get lucky!

This seems silly, but…
● Succeeds w.h.p!
● Faster than brute force!
● Better analysis: O(1.334n)!


